Pandas Tutorial

Pandas Tutorial

Are you starting with Data Science? Pandas is perhaps the first best thing you will need. And it’s really easy!

After reading (and practising) this tutorial you will learn how to:

  • Create, add, remove and rename columns
  • Read, select and filter data
  • Retrieve statistics for data
  • Sort and group data
  • Manipulate data

Happy learning!

Import Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 500)
pd.set_option('max_colwidth', 100)

1. Rows and Columns (create, add, remove, rename)

Create a DataFrame + add rows and columns

data_to_add = {
    'Name':['Greece', 'Paraguay', 'Ireland'],
    'Population':[10.77, 6.62, 4.78],
    'Area':[128.9, 397.3, 68.89]
}
countries = pd.DataFrame(data_to_add, columns=['Name','Population','Area'])
#Note: if you don't specify 'columns', then they will be placed in alphabetical order

countries.head()
Name Population Area
0 Greece 10.77 128.90
1 Paraguay 6.62 397.30
2 Ireland 4.78 68.89

Add data (a row) with append

countries = countries.append({'Name':'Japan',
                              'Population':127.25,
                              'Area':364.5}, ignore_index=True)
#Note: If you type the name of a column that does not exist, then it will be created with NaNs for all other rows
countries.head()
Name Population Area
0 Greece 10.77 128.90
1 Paraguay 6.62 397.30
2 Ireland 4.78 68.89
3 Japan 127.25 364.50
names = ['Singapore', 'Gabon']
populations = [4.46, 1.64]
areas = [0.687, 257.67]
for i in range(len(names)):
    countries = countries.append({'Name':names[i],
                              'Population':populations[i],
                              'Area':areas[i]}, ignore_index=True)
countries.head(10)
Name Population Area
0 Greece 10.77 128.900
1 Paraguay 6.62 397.300
2 Ireland 4.78 68.890
3 Japan 127.25 364.500
4 Singapore 4.46 0.687
5 Gabon 1.64 257.670

Add feature (a column) with assign. Handcrafted data

countries = countries.assign(GDP = [22.08,3.81,45.83,46.72,51.7,11.43])

Add a feature (a column) from interactions with other features

countries['PopulationPerArea'] = countries['Population']/countries['Area']
countries.head(10)
Name Population Area GDP PopulationPerArea
0 Greece 10.77 128.900 22.08 0.083553
1 Paraguay 6.62 397.300 3.81 0.016662
2 Ireland 4.78 68.890 45.83 0.069386
3 Japan 127.25 364.500 46.72 0.349108
4 Singapore 4.46 0.687 51.70 6.491994
5 Gabon 1.64 257.670 11.43 0.006365

Remove (drop) a row

countries = countries.drop(3, axis=0) #Drop by index
countries.head(10)
Name Population Area GDP PopulationPerArea
0 Greece 10.77 128.900 22.08 0.083553
1 Paraguay 6.62 397.300 3.81 0.016662
2 Ireland 4.78 68.890 45.83 0.069386
4 Singapore 4.46 0.687 51.70 6.491994
5 Gabon 1.64 257.670 11.43 0.006365

Remove (drop) a column

countries = countries.drop(['PopulationPerArea'], axis=1)
countries.head(10)
Name Population Area GDP
0 Greece 10.77 128.900 22.08
1 Paraguay 6.62 397.300 3.81
2 Ireland 4.78 68.890 45.83
4 Singapore 4.46 0.687 51.70
5 Gabon 1.64 257.670 11.43

Rename a column

countries = countries.rename(columns={'GDP':'Money'})
countries.head(10)
Name Population Area Money
0 Greece 10.77 128.900 22.08
1 Paraguay 6.62 397.300 3.81
2 Ireland 4.78 68.890 45.83
4 Singapore 4.46 0.687 51.70
5 Gabon 1.64 257.670 11.43

2. Selecting Data

Subsets of columns of DataFrame

print(type(countries['Name'])) # A single column in [] is called Series
countries['Name']
<class 'pandas.core.series.Series'>





0       Greece
1     Paraguay
2      Ireland
4    Singapore
5        Gabon
Name: Name, dtype: object
type(countries[['Name']]) # With [[]] it is again a DataFrame
countries[['Name']]
Name
0 Greece
1 Paraguay
2 Ireland
4 Singapore
5 Gabon
countries[['Name','Money']] # More columns
Name Money
0 Greece 22.08
1 Paraguay 3.81
2 Ireland 45.83
4 Singapore 51.70
5 Gabon 11.43

Subsets of rows of DataFrame with slice

countries[0:2] # Return the rows from the 0th to the 1st position
Name Population Area Money
0 Greece 10.77 128.9 22.08
1 Paraguay 6.62 397.3 3.81

Subsets of rows of DataFrame with iloc

Same as slice

countries.iloc[0:2]
Name Population Area Money
0 Greece 10.77 128.9 22.08
1 Paraguay 6.62 397.3 3.81

Subsets of rows and columns of DataFrame with iloc

countries.iloc[0:4,0:2]
Name Population
0 Greece 10.77
1 Paraguay 6.62
2 Ireland 4.78
4 Singapore 4.46

Filter rows and select specific columns

countries[countries['Population']>5][['Name','Population']]
Name Population
0 Greece 10.77
1 Paraguay 6.62

Select rows of DataFrame with loc

loc gets rows (or columns) with particular labels from the index

countries.loc[[1,2]]
Name Population Area Money
1 Paraguay 6.62 397.30 3.81
2 Ireland 4.78 68.89 45.83

Select rows and columns of DataFrame with loc

countries.loc[[1,2], ['Name','Area']]
Name Area
1 Paraguay 397.30
2 Ireland 68.89

Select specific cell (row,column) of a DataFrame with at

countries.at[1,'Name'] # index,column_name
'Paraguay'

3. Filtering Data

Relational Operators

countries[countries['Area']>100]
Name Population Area Money
0 Greece 10.77 128.90 22.08
1 Paraguay 6.62 397.30 3.81
5 Gabon 1.64 257.67 11.43

Logical Operators

countries[(countries['Area']>100) & (countries['Population']>5)] # don't forget brackets
Name Population Area Money
0 Greece 10.77 128.9 22.08
1 Paraguay 6.62 397.3 3.81
countries[countries['Name'].isin(['Greece','Gabon'])]
Name Population Area Money
0 Greece 10.77 128.90 22.08
5 Gabon 1.64 257.67 11.43

If contains string

countries[countries['Name'].str.contains('e')]
Name Population Area Money
0 Greece 10.77 128.900 22.08
2 Ireland 4.78 68.890 45.83
4 Singapore 4.46 0.687 51.70

Use query command to find a specific values in a column

countries.query('Area>100 & Population>5')
Name Population Area Money
0 Greece 10.77 128.9 22.08
1 Paraguay 6.62 397.3 3.81

4. Reading Data

House Prices Dataset from https://www.kaggle.com/c/house-prices-advanced-regression-techniques

train = pd.read_csv('train.csv', sep=',')
test = pd.read_csv('test.csv', sep=',')

Headers of DataFrame

train.columns.values
array(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
       'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
       'LandSlope', 'Neighborhood', 'Condition1', 'Condition2',
       'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond',
       'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl',
       'Exterior1st', 'Exterior2nd', 'MasVnrType', 'MasVnrArea',
       'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond',
       'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1', 'BsmtFinType2',
       'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating', 'HeatingQC',
       'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF',
       'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
       'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu',
       'GarageType', 'GarageYrBlt', 'GarageFinish', 'GarageCars',
       'GarageArea', 'GarageQual', 'GarageCond', 'PavedDrive',
       'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
       'ScreenPorch', 'PoolArea', 'PoolQC', 'Fence', 'MiscFeature',
       'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition',
       'SalePrice'], dtype=object)

Dimensions of DataFrame

train.shape
(1460, 81)

5. Statistics

train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
Id               1460 non-null int64
MSSubClass       1460 non-null int64
MSZoning         1460 non-null object
LotFrontage      1201 non-null float64
LotArea          1460 non-null int64
Street           1460 non-null object
Alley            91 non-null object
LotShape         1460 non-null object
LandContour      1460 non-null object
Utilities        1460 non-null object
LotConfig        1460 non-null object
LandSlope        1460 non-null object
Neighborhood     1460 non-null object
Condition1       1460 non-null object
Condition2       1460 non-null object
BldgType         1460 non-null object
HouseStyle       1460 non-null object
OverallQual      1460 non-null int64
OverallCond      1460 non-null int64
YearBuilt        1460 non-null int64
YearRemodAdd     1460 non-null int64
RoofStyle        1460 non-null object
RoofMatl         1460 non-null object
Exterior1st      1460 non-null object
Exterior2nd      1460 non-null object
MasVnrType       1452 non-null object
MasVnrArea       1452 non-null float64
ExterQual        1460 non-null object
ExterCond        1460 non-null object
Foundation       1460 non-null object
BsmtQual         1423 non-null object
BsmtCond         1423 non-null object
BsmtExposure     1422 non-null object
BsmtFinType1     1423 non-null object
BsmtFinSF1       1460 non-null int64
BsmtFinType2     1422 non-null object
BsmtFinSF2       1460 non-null int64
BsmtUnfSF        1460 non-null int64
TotalBsmtSF      1460 non-null int64
Heating          1460 non-null object
HeatingQC        1460 non-null object
CentralAir       1460 non-null object
Electrical       1459 non-null object
1stFlrSF         1460 non-null int64
2ndFlrSF         1460 non-null int64
LowQualFinSF     1460 non-null int64
GrLivArea        1460 non-null int64
BsmtFullBath     1460 non-null int64
BsmtHalfBath     1460 non-null int64
FullBath         1460 non-null int64
HalfBath         1460 non-null int64
BedroomAbvGr     1460 non-null int64
KitchenAbvGr     1460 non-null int64
KitchenQual      1460 non-null object
TotRmsAbvGrd     1460 non-null int64
Functional       1460 non-null object
Fireplaces       1460 non-null int64
FireplaceQu      770 non-null object
GarageType       1379 non-null object
GarageYrBlt      1379 non-null float64
GarageFinish     1379 non-null object
GarageCars       1460 non-null int64
GarageArea       1460 non-null int64
GarageQual       1379 non-null object
GarageCond       1379 non-null object
PavedDrive       1460 non-null object
WoodDeckSF       1460 non-null int64
OpenPorchSF      1460 non-null int64
EnclosedPorch    1460 non-null int64
3SsnPorch        1460 non-null int64
ScreenPorch      1460 non-null int64
PoolArea         1460 non-null int64
PoolQC           7 non-null object
Fence            281 non-null object
MiscFeature      54 non-null object
MiscVal          1460 non-null int64
MoSold           1460 non-null int64
YrSold           1460 non-null int64
SaleType         1460 non-null object
SaleCondition    1460 non-null object
SalePrice        1460 non-null int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
train.describe()
Id MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2 BsmtUnfSF TotalBsmtSF 1stFlrSF 2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr KitchenAbvGr TotRmsAbvGrd Fireplaces GarageYrBlt GarageCars GarageArea WoodDeckSF OpenPorchSF EnclosedPorch 3SsnPorch ScreenPorch PoolArea MiscVal MoSold YrSold SalePrice
count 1460.000000 1460.000000 1201.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1452.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1379.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000
mean 730.500000 56.897260 70.049958 10516.828082 6.099315 5.575342 1971.267808 1984.865753 103.685262 443.639726 46.549315 567.240411 1057.429452 1162.626712 346.992466 5.844521 1515.463699 0.425342 0.057534 1.565068 0.382877 2.866438 1.046575 6.517808 0.613014 1978.506164 1.767123 472.980137 94.244521 46.660274 21.954110 3.409589 15.060959 2.758904 43.489041 6.321918 2007.815753 180921.195890
std 421.610009 42.300571 24.284752 9981.264932 1.382997 1.112799 30.202904 20.645407 181.066207 456.098091 161.319273 441.866955 438.705324 386.587738 436.528436 48.623081 525.480383 0.518911 0.238753 0.550916 0.502885 0.815778 0.220338 1.625393 0.644666 24.689725 0.747315 213.804841 125.338794 66.256028 61.119149 29.317331 55.757415 40.177307 496.123024 2.703626 1.328095 79442.502883
min 1.000000 20.000000 21.000000 1300.000000 1.000000 1.000000 1872.000000 1950.000000 0.000000 0.000000 0.000000 0.000000 0.000000 334.000000 0.000000 0.000000 334.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.000000 0.000000 1900.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2006.000000 34900.000000
25% 365.750000 20.000000 59.000000 7553.500000 5.000000 5.000000 1954.000000 1967.000000 0.000000 0.000000 0.000000 223.000000 795.750000 882.000000 0.000000 0.000000 1129.500000 0.000000 0.000000 1.000000 0.000000 2.000000 1.000000 5.000000 0.000000 1961.000000 1.000000 334.500000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.000000 2007.000000 129975.000000
50% 730.500000 50.000000 69.000000 9478.500000 6.000000 5.000000 1973.000000 1994.000000 0.000000 383.500000 0.000000 477.500000 991.500000 1087.000000 0.000000 0.000000 1464.000000 0.000000 0.000000 2.000000 0.000000 3.000000 1.000000 6.000000 1.000000 1980.000000 2.000000 480.000000 0.000000 25.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.000000 2008.000000 163000.000000
75% 1095.250000 70.000000 80.000000 11601.500000 7.000000 6.000000 2000.000000 2004.000000 166.000000 712.250000 0.000000 808.000000 1298.250000 1391.250000 728.000000 0.000000 1776.750000 1.000000 0.000000 2.000000 1.000000 3.000000 1.000000 7.000000 1.000000 2002.000000 2.000000 576.000000 168.000000 68.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8.000000 2009.000000 214000.000000
max 1460.000000 190.000000 313.000000 215245.000000 10.000000 9.000000 2010.000000 2010.000000 1600.000000 5644.000000 1474.000000 2336.000000 6110.000000 4692.000000 2065.000000 572.000000 5642.000000 3.000000 2.000000 3.000000 2.000000 8.000000 3.000000 14.000000 3.000000 2010.000000 4.000000 1418.000000 857.000000 547.000000 552.000000 508.000000 480.000000 738.000000 15500.000000 12.000000 2010.000000 755000.000000

mean, median, quantile, min, max

print('Year Build mean: {:.2f}'.format(train['YearBuilt'].mean()))
print('Year Build median: {:.2f}'.format(train['YearBuilt'].median()))
print('Year Build quantile 25%: {:.2f}'.format(train['YearBuilt'].quantile(0.25)))
print('Year Build quantile 70%: {:.2f}'.format(train['YearBuilt'].quantile(0.7)))
print('Year Build min: {:.2f}'.format(train['YearBuilt'].min()))
print('Year Build max: {:.2f}'.format(train['YearBuilt'].max()))
Year Build mean: 1971.27
Year Build median: 1973.00
Year Build quantile 25%: 1954.00
Year Build quantile 70%: 1997.30
Year Build min: 1872.00
Year Build max: 2010.00

Find the value of the index that has max

train['YearBuilt'].idxmax()
378

Count the different occurencies of a column

train['Fireplaces'].value_counts()
0    690
1    650
2    115
3      5
Name: Fireplaces, dtype: int64

Find unique instances of a column

print(train['Fireplaces'].nunique()) #how many unique
train['Fireplaces'].unique() #displays the unique
4





array([0, 1, 2, 3], dtype=int64)

Count

train['YearBuilt'].count()
1460

Sum

train['SalePrice'].sum()
264144946

Mode (Most common value)

train['YearBuilt'].mode()
0    2006
dtype: int64

6. Sorting and Grouping Data

Sort

train.sort_values(by='SalePrice', ascending=False).head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType HouseStyle OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl Exterior1st Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2 BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical 1stFlrSF 2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional Fireplaces FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars GarageArea GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF EnclosedPorch 3SsnPorch ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
691 692 60 RL 104.0 21535 Pave NaN IR1 Lvl AllPub Corner Gtl NoRidge Norm Norm 1Fam 2Story 10 6 1994 1995 Gable WdShngl HdBoard HdBoard BrkFace 1170.0 Ex TA PConc Ex TA Gd GLQ 1455 Unf 0 989 2444 GasA Ex Y SBrkr 2444 1872 0 4316 0 1 3 1 4 1 Ex 10 Typ 2 Ex Attchd 1994.0 Fin 3 832 TA TA Y 382 50 0 0 0 0 NaN NaN NaN 0 1 2007 WD Normal 755000
1182 1183 60 RL 160.0 15623 Pave NaN IR1 Lvl AllPub Corner Gtl NoRidge Norm Norm 1Fam 2Story 10 5 1996 1996 Hip CompShg Wd Sdng ImStucc None 0.0 Gd TA PConc Ex TA Av GLQ 2096 Unf 0 300 2396 GasA Ex Y SBrkr 2411 2065 0 4476 1 0 3 1 4 1 Ex 10 Typ 2 TA Attchd 1996.0 Fin 3 813 TA TA Y 171 78 0 0 0 555 Ex MnPrv NaN 0 7 2007 WD Abnorml 745000
1169 1170 60 RL 118.0 35760 Pave NaN IR1 Lvl AllPub CulDSac Gtl NoRidge Norm Norm 1Fam 2Story 10 5 1995 1996 Hip CompShg HdBoard HdBoard BrkFace 1378.0 Gd Gd PConc Ex TA Gd GLQ 1387 Unf 0 543 1930 GasA Ex Y SBrkr 1831 1796 0 3627 1 0 3 1 4 1 Gd 10 Typ 1 TA Attchd 1995.0 Fin 3 807 TA TA Y 361 76 0 0 0 0 NaN NaN NaN 0 7 2006 WD Normal 625000
898 899 20 RL 100.0 12919 Pave NaN IR1 Lvl AllPub Inside Gtl NridgHt Norm Norm 1Fam 1Story 9 5 2009 2010 Hip CompShg VinylSd VinylSd Stone 760.0 Ex TA PConc Ex TA Gd GLQ 2188 Unf 0 142 2330 GasA Ex Y SBrkr 2364 0 0 2364 1 0 2 1 2 1 Ex 11 Typ 2 Gd Attchd 2009.0 Fin 3 820 TA TA Y 0 67 0 0 0 0 NaN NaN NaN 0 3 2010 New Partial 611657
803 804 60 RL 107.0 13891 Pave NaN Reg Lvl AllPub Inside Gtl NridgHt Norm Norm 1Fam 2Story 9 5 2008 2009 Hip CompShg VinylSd VinylSd Stone 424.0 Ex TA PConc Ex TA Gd Unf 0 Unf 0 1734 1734 GasA Ex Y SBrkr 1734 1088 0 2822 0 0 3 1 4 1 Ex 12 Typ 1 Gd BuiltIn 2009.0 RFn 3 1020 TA TA Y 52 170 0 0 192 0 NaN NaN NaN 0 1 2009 New Partial 582933
train.sort_values(['Fireplaces', 'SalePrice'], ascending=[0,1])[['Fireplaces', 'SalePrice']].head(8) # 0 means ascending=False
Fireplaces SalePrice
1298 3 160000
166 3 190000
605 3 205000
642 3 345000
309 3 360000
393 2 100000
662 2 110000
9 2 118000

Group

train.groupby('Fireplaces')['SalePrice'].mean()
Fireplaces
0    141331.482609
1    211843.909231
2    240588.539130
3    252000.000000
Name: SalePrice, dtype: float64

Group continious variables to distinct classes with cut

train['YearBuilt_Distinct'] = pd.cut(train['YearBuilt'], [-1, 1950, 1980, 2000, 2010], labels=['Before 1951','1951-1980', '1981-1999', '2001-2010'])
train['YearBuilt_Distinct'].head()
0      2001-2010
1      1951-1980
2      2001-2010
3    Before 1951
4      1981-1999
Name: YearBuilt_Distinct, dtype: category
Categories (4, object): [Before 1951 < 1951-1980 < 1981-1999 < 2001-2010]

7. Manipulating Data

Transform

Applies to groupby. The output is the same shape as the input dataframe. The grouped values are placed in each corresponding row.

train['meanLivAreaPerYearBuilt'] = train.groupby('YearBuilt')['GrLivArea'].transform('mean')
train[['YearBuilt','meanLivAreaPerYearBuilt']][25:30] # See that same years have the same value
YearBuilt meanLivAreaPerYearBuilt
25 2007 1721.448980
26 1951 1239.166667
27 2007 1721.448980
28 1957 1379.850000
29 1927 838.666667

Map

Works with Series (one column). Use it with a lambda function and think of it like a for loop. For each row in column ‘GrLivArea’, run a function

train['GrLivArea'].map(lambda x: x/train['GrLivArea'].max()).head()
0    0.303084
1    0.223680
2    0.316554
3    0.304325
4    0.389578
Name: GrLivArea, dtype: float64

Apply

Works with DataFrame (one or more columns). Use it with lambda like map

train[['YearBuilt','GrLivArea']].apply(lambda x: x - x.min()).head()
YearBuilt GrLivArea
0 131 1376
1 104 928
2 129 1452
3 43 1383
4 128 1864

Or use it to get single values as answer to a function

train[['YearBuilt','GrLivArea']].apply(lambda x: x.max() - x.min())
YearBuilt     138
GrLivArea    5308
dtype: int64

List Comprehension

train['GrLivArea_binary'] = ['big' if i>1500 else 'normal' for i in train['GrLivArea']]
train[['GrLivArea','GrLivArea_binary']].head()
GrLivArea GrLivArea_binary
0 1710 big
1 1262 normal
2 1786 big
3 1717 big
4 2198 big

Change/Replace values based on condition

train.loc[train['GrLivArea'] > 2000,  'GrLivArea'] = 2000

Leave a Comment